Also known as NGC 104, 47 Tucanae is a jewel of the southern sky. Not a star but a dense cluster of stars, it roams the halo of our Milky Way Galaxy along with some 200 other globular star clusters. The second brightest globular cluster (after Omega Centauri) as seen from planet Earth, 47 Tuc lies about 13,000 light-years away. It can be spotted with the naked eye close on the sky to the Small Magellanic Cloud in the constellation of the Toucan. The dense cluster is made up of hundreds of thousands of stars in a volume only about 120 light-years across. Red giant stars on the outskirts of the cluster are easy to pick out as yellowish stars in this sharp telescopic portrait. Tightly packed globular star cluster 47 Tuc is also home to a star with the closest known orbit around a black hole. [via NASA] https://ift.tt/3XzAnHD

Magnificent spiral galaxy NGC 4565 is viewed edge-on from planet Earth. Also known as the Needle Galaxy for its narrow profile, bright NGC 4565 is a stop on many telescopic tours of the northern sky, in the faint but well-groomed constellation Coma Berenices. This sharp, colorful image reveals the galaxy’s boxy, bulging central core cut by obscuring dust lanes that lace NGC 4565’s thin galactic plane. NGC 4565 lies around 40 million light-years distant while the spiral galaxy itself spans some 100,000 light-years. That’s about the size of our own Milky Way. Easily spotted with small telescopes, deep sky enthusiasts consider NGC 4565 to be a prominent celestial masterpiece Messier missed. [via NASA] https://ift.tt/owfkZ59

How soon do jets form when a supernova gives birth to a neutron star? The Africa Nebula provides clues. This supernova remnant surrounds Circinus X-1, an X-ray emitting neutron star and the companion star it orbits. The image, from the ThunderKAT collaboration on the MeerKAT radio telescope situated in South Africa, shows the bright core-and-lobe structure of Cir X-1’s currently active jets inside the nebula. A mere 4600 years old, Cir X-1 could be the «Little Sister» of microquasarSS 433*. However, the newly discovered bubble exiting from a ring-like hole in the upper right of the nebula, along with a ring to the bottom left, demonstrate that other jets previously existed. Computer simulations indicate those jets formed within 100 years of the explosion and lasted up to 1000 years. Surprisingly, to create the observed bubble, the jets need to be more powerful than young neutron stars were previously thought to produce. [via NASA] https://ift.tt/uAMgI9B

The Horsehead Nebula is one of the most famous nebulae on the sky. It is visible as the dark indentation to the orange emission nebula at the far right of the featured picture. The horse-head feature is dark because it is really an opaque dust cloud that lies in front of the bright emission nebula. Like clouds in Earth’s atmosphere, this cosmic cloud has assumed a recognizable shape by chance. After many thousands of years, the internal motions of the cloud will surely alter its appearance. The emission nebula’s orange color is caused by electrons recombining with protons to form hydrogen atoms. Toward the lower left of the image is the Flame Nebula, an orange-tinged nebula that also contains intricate filaments of dark dust. [via NASA] https://ift.tt/Oa0h6fE

Its surface is the most densely cratered in the Solar System — but what’s inside? Jupiter’s moon Callisto is a battered ball of dirty ice that is larger than the planet Mercury. It was visited by NASA’s Galileo spacecraft in the 1990s and 2000s, but the recently reprocessed featured image is from a flyby of NASA’s Voyager 2 in 1979. The moon would appear darker if it weren’t for the tapestry of light-colored fractured surface ice created by eons of impacts. The interior of Callisto is potentially even more interesting because therein might lie an internal layer of liquid water. This potential underground sea is a candidate to harbor life — similar with sister moons Europa and Ganymede. Callisto is slightly larger than Luna, Earth’s Moon, but because of its high ice content is slightly less massive. ESA’s JUICE and NASA’s Europa Clipper missions are now headed out to Jupiter to better investigate its largest moons. [via NASA] https://ift.tt/x7PSrC4