Quadrantids

Named for a forgotten constellation, the Quadrantid Meteor Shower is an annual event for planet Earth’s northern hemisphere skygazers It usually peaks briefly in the cold, early morning hours of January 4. The shower’s radiant on the sky lies within the old, astronomically obsolete constellation Quadrans Muralis. That position is situated near the boundaries of the modern constellations Hercules, Bootes, and Draco. About 30 Quadrantid meteors can be counted in this skyscape composed of digital frames recorded in dark and moonless skies between 2:30am and local dawn. The shower’s radiant is rising just to the right of the Canary Island of Tenerife’s Teide volcano, and just below the familiar stars of the Big Dipper on the northern sky. A likely source of the dust stream that produces Quadrantid meteors was identified in 2003 as an asteroid. Look carefully and you can also spot a small, telltale greenish coma above the volcanic peak and near the top of the frame. That’s the 2018 Christmas visitor to planet Earth’s skies, Comet Wirtanen. [via NASA] https://go.nasa.gov/2GZP2sX

HESS Telescopes Explore the High Energy Sky

They may look like modern mechanical dinosaurs but they are enormous swiveling eyes that watch the sky. The High Energy Stereoscopic System (H.E.S.S.) Observatory is composed of four 12-meter reflecting-mirror telescopes surrounding a larger telescope housing a 28-meter mirror. They are designed to detect strange flickers of blue light — Cherenkov radiation –emitted when charged particles move slightly faster than the speed of light in air. This light is emitted when a gamma ray from a distant source strikes a molecule in Earth’s atmosphere and starts a charged-particle shower. H.E.S.S. is sensitive to some of the highest energy photons (TeV) crossing the universe. Operating since 2003 in Namibia, H.E.S.S. has searched for dark matter and has discovered over 50 sources emitting high energy radiation including supernova remnants and the centers of galaxies that contain supermassive black holes. Pictured last September, H.E.S.S. telescopes swivel and stare in time-lapse sequences shot in front of our Milky Way Galaxy and the Magellanic Clouds — as the occasional Earth-orbiting satellite zips by. [via NASA] https://go.nasa.gov/2LUVtg1

Yutu 2 on the Farside

On January 3, the Chinese Chang’e-4 spacecraft made the first successful landing on the Moon’s farside. Taken by a camera on board the lander, this image is from the landing site inside Von Karman crater. It shows the desksized, six-wheeled Yutu 2 (Jade Rabbit 2) rover as it rolled down lander ramps and across the surface near local sunrise and the start of the two week long lunar day. Ripe for exploration, Von Karman crater itself is 186 kilometers in diameter. It lies within the Moon’s old and deep South Pole-Aitken impact basin with some of the most ancient and least understood lunar terrains. To bridge communications from the normally hidden hemisphere of the Moon, China launched a relay satellite, Queqiao, in May of 2018 in to an orbit beyond the lunar farside. [via NASA] https://go.nasa.gov/2QlqLgA

Ultima Thule is the most distant world explored by a spacecraft from Earth. In the dim light 6.5 billion kilometers from the Sun, the New Horizons spacecraft captured these two frames 38 minutes apart as it sped toward the Kuiper belt world on January 1 at 51,000 kilometers per hour. A contact binary, the two lobes of Ultima Thule rotate together once every 15 hours or so. Shown as a blinking gif, the rotation between the frames produces a tantalizing 3D perspective of the most primitive world ever seen. Dubbed separately by the science team Ultima and Thule, the larger lobe Ultima, is about 19 kilometers in diameter. Smaller Thule is 14 kilometers across. [via NASA] https://go.nasa.gov/2R6JMIF

Ultima and Thule

On January 1 New Horizons encountered the Kuiper Belt object nicknamed Ultima Thule. Some 6.5 billion kilometers from the Sun, Ultima Thule is the most distant world ever explored by a spacecraft from Earth. This historic image, the highest resolution image released so far, was made at a range of about 28,000 kilometers only 30 minutes before the New Horizons closest approach. Likely the result of a gentle collision shortly after the birth of the Solar System, Ultima Thule is revealed to be a contact binary, two connected sphere-like shapes held in contact by mutual gravity. Dubbed separately by the science team Ultima and Thule, the larger lobe Ultima is about 19 kilometers in diameter. Smaller Thule is 14 kilometers across. [via NASA] https://go.nasa.gov/2TjLMdk

The Orion Nebula in Infrared from WISE

The Great Nebula in Orion is an intriguing place. Visible to the unaided eye, it appears as a small fuzzy patch in the constellation of Orion. But this image, an illusory-color four-panel mosaic taken in different bands of infrared light with the Earth orbiting WISE observatory, shows the Orion Nebula to be a bustling neighborhood of recently formed stars, hot gas, and dark dust. The power behind much of the Orion Nebula (M42) is the stars of the Trapezium star cluster, seen near the center of the featured image. The orange glow surrounding the bright stars pictured here is their own starlight reflected by intricate dust filaments that cover much of the region. The current Orion Nebula cloud complex, which includes the Horsehead Nebula, will slowly disperse over the next 100,000 years. [via NASA] https://go.nasa.gov/2QdYuII

The Witch Head Nebula

Double, double toil and trouble; Fire burn, and cauldron bubble …. maybe Macbeth should have consulted the Witch Head Nebula. A frighteningly shaped reflection nebula, this cosmic crone is about 800 light-years away though. Its malevolent visage seems to glare toward nearby bright star Rigel in Orion, just off the right edge of this frame. More formally known as IC 2118, the interstellar cloud of dust and gas is nearly 70 light-years across, its dust grains reflecting Rigel’s starlight. In this composite portrait, the nebula’s color is caused not only by the star’s intense bluish light but because the dust grains scatter blue light more efficiently than red. The same physical process causes Earth’s daytime sky to appear blue, although the scatterers in planet Earth’s atmosphere are molecules of nitrogen and oxygen. [via NASA] https://go.nasa.gov/2EYholA

The Galaxy Tree

First came the trees. In the town of Salamanca, Spain, the photographer noticed how distinctive a grove of oak trees looked after being pruned. Next came the galaxy. The photographer stayed up until 2 am, waiting until the Milky Way Galaxy rose above the level of a majestic looking oak. From this carefully chosen perspective, dust lanes in the galaxy appear to be natural continuations to branches of the tree. Last came the light. A flashlight was used on the far side of the tree to project a silhouette. By coincidence, other trees also appeared as similar silhouettes across the relatively bright horizon. The featured image was captured as a single 30-second frame earlier this month and processed to digitally enhance the Milky Way. [via NASA] https://go.nasa.gov/2LLZcwp

New Horizons at Ultima Thule

When we celebrate the start of 2019, on January 1 the New Horizons spacecraft will flyby Ultima Thule. A world of the Kuiper belt 6.5 billion kilometers from the Sun, the nickname Ultima Thule (catalog designation 2014 MU69) fittingly means «beyond the known world». Following its 2015 flyby of Pluto, New Horizons was targeted for this journey, attempting the most distant flyby for a spacecraft from Earth by approaching Ultima Thule to within about 3500 kilometers. The tiny world itself is about 30 kilometers in size. This year, an observing campaign with Earth-based telescopes determined the shape of the object to be a contact binary or a close binary sytem as in this artist’s illustration. New Horizons will image close up its unexplored surface in the dim light of the distant Sun. [via NASA] https://go.nasa.gov/2QbItTP

NGC 1365: Majestic Island Universe

Barred spiral galaxy NGC 1365 is truly a majestic island universe some 200,000 light-years across. Located a mere 60 million light-years away toward the chemical constellation Fornax, NGC 1365 is a dominant member of the well-studied Fornax galaxy cluster. This impressively sharp color image shows intense star forming regions at the ends of the bar and along the spiral arms, and details of dust lanes cutting across the galaxy’s bright core. At the core lies a supermassive black hole. Astronomers think NGC 1365’s prominent bar plays a crucial role in the galaxy’s evolution, drawing gas and dust into a star-forming maelstrom and ultimately feeding material into the central black hole. [via NASA] https://go.nasa.gov/2SlQAPi