Aurora Shimmer, Meteor Flash

Some night skies are serene and passive — others shimmer and flash. The later, in the form of auroras and meteors, haunted skies over the island of Kvaløya, near Tromsø Norway on 2009 December 13. This 30 second long exposure records a shimmering auroral glow gently lighting the wintery coastal scene. A study in contrasts, the image also captures the sudden flash of a fireball meteor from the excellent Geminid meteor shower of 2009. Streaking past familiar stars in the handle of the Big Dipper, the trail points back toward the constellation Gemini, off the top of the view. Both auroras and meteors occur in Earth’s upper atmosphere at altitudes of 100 kilometers or so, but aurora caused by energetic charged particles from the magnetosphere, while meteors are trails of cosmic dust. Nine years after this photograph was taken, toward the end of this week, the yearly 2018 Geminids meteor shower will peak again, although this time their flashes will compete with the din of a half-lit first-quarter moon during the first half of the night. [via NASA]

Tiny Planet Timelapse

You can pack a lot of sky watching into 30 seconds on this tiny planet. Of course, the full spherical image timelapse video was recorded on planet Earth, from Grande Pines Observatory outside Pinehurst, North Carolina. It was shot in early September with a single camera and circular fisheye lens, digitally combining one 24-hour period with camera and lens pointed up with one taken with camera and lens pointed down. The resulting image data is processed and projected onto a flat frame centered on the nadir, the point directly below the camera. Watch as clouds pass, shadows creep, and the sky cycles from day to night when stars swirl around the horizon. Keep watching, though. In a second sequence the projected center is the south celestial pole, planet Earth’s axis of rotation below the tiny planet horizon. Holding the stars fixed, the horizon itself rotates as the tiny planet swings around the frame, hiding half the sky through day and night. [via NASA]

December s Comet Wirtanen

Coming close in mid-December, Comet 46P Wirtanen hangs in this starry sky over the bell tower of a Romanesque church. In the constructed vertical panorama, a series of digital exposures capture its greenish coma on December 3 from Sant Llorenc de la Muga, Girona, Catalonia, Spain, planet Earth. With an orbital period that is now about 5.4 years, the periodic comet’s perihelion, its closest approach, to the Sun will be on December 12. On December 16 it will be closest to Earth, passing at a distance of about 11.6 million kilometers or 39 light-seconds. That’s close for a comet, a mere 30 times the Earth-Moon distance. A good binocular target for comet watchers, Wirtanen could be visible to the unaided eye from a dark sky site. To spot it after dusk on December 16, look close on the sky to the Pleiades star cluster in Taurus. [via NASA]

Cetus Galaxies and Supernova

Large spiral galaxy NGC 1055 at top left joins spiral Messier 77 (bottom right) in this cosmic view toward the aquatic constellation Cetus. The narrowed, dusty appearance of edge-on spiral NGC 1055 contrasts nicely with the face-on view of M77’s bright nucleus and spiral arms. Both over 100,000 light-years across, the pair are dominant members of a small galaxy group about 60 million light-years away. At that estimated distance, M77 is one of the most remote objects in Charles Messier’s catalog, and is separated from fellow island universe NGC 1055 by at least 500,000 light-years. The field of view is about the size of the full Moon on the sky and includes colorful foreground Milky Way stars along with more distant background galaxies. Taken on November 28, the sharp image also includes newly discovered supernova SN2018ivc, its location indicated in the arms of M77. The light from the explosion of one of M77’s massive stars was discovered by telescopes on planet Earth only a few days earlier on November 24. [via NASA]

Highlights of the North Winter Sky

What can you see in the night sky this season? The featured graphic gives a few highlights for Earth’s northern hemisphere. Viewed as a clock face centered at the bottom, early (northern) winter sky events fan out toward the left, while late winter events are projected toward the right. Objects relatively close to Earth are illustrated, in general, as nearer to the cartoon figure with the telescope at the bottom center — although almost everything pictured can be seen without a telescope. As happens during any season, constellations appear the same year to year, and, as usual, the Geminids meteor shower will peak in mid-December. Also as usual, the International Space Station (ISS) can be seen, at times, as a bright spot drifting across the sky after sunset. Less usual, the Moon is expected to pass nearly in front of several planets in early January. A treat this winter is Comet 46P/Wirtanen, already bright, will pass only 36 lunar distances from the Earth in mid-December, potentially making it easily visible to the unaided eye. [via NASA]

Rocket Launch between Mountains

What’s happening between those mountains? A rocket is being launched to space. Specifically, a Long March 3B Carrier Rocket was launched from Xichang Satellite Launch Center in Sichuan Province in China about two week ago. The rocket lifted two navigation satellites to about 2,000 kilometers above the Earth’s surface, well above the orbit of the International Space Station, but well below the orbit of geostationary satellites. China’s Chang’e 3 mission that landed the robotic Yutu rover on the Moon was launched from Xichang in 2013. The featured image was taken about 10 kilometers from the launch site and is actually a composite of nine exposures, including a separate background image. [via NASA]

Spiraling Supermassive Black Holes

Do black holes glow when they collide? When merging, co-orbiting black holes are sure to emit a burst of unusual gravitational radiation, but will they emit light, well before that, if they are surrounded by gas? To help find out, astrophysicists created a sophisticated computer simulation. The simulation and featured resulting video accurately depicts two spiraling supermassive black holes, including the effects of Einstein’s general relativity on the surrounding gas and light. The video first shows the system from the top, and later from the side where unusual gravitational lens distortions are more prominent. Numerical results indicate that gravitational and magnetic forces should energize the gas to emit high-energy light from the ultraviolet to the X-ray. The emission of such light may enable humanity to detect and study supermassive black hole pairs well before they spiral together. [via NASA]